Blue-green deployment

💡 Tip: Once your dbt project is ready to move out of development, or as soon as you start managing multiple users and deployment environments, we recommend checking the code in to version control and setting up an automated workflow to control the deployment of changes.

The dbt-materialize adapter ships with helper macros to automate blue/green deployments. We recommend using the blue/green pattern any time you need to deploy changes to the definition of objects in Materialize in production environments and can’t tolerate downtime.

For development environments with no downtime considerations, you might prefer to use the slim deployment pattern instead for quicker iteration and reduced CI costs.

RBAC permissions requirements

When using blue/green deployments with role-based access control (RBAC), ensure that the role executing the deployment operations has sufficient privileges on the target objects:

  • The role must have ownership privileges on the schemas being deployed
  • The role must have ownership privileges on the clusters being deployed

These permissions are required because the blue/green deployment process needs to create, modify, and swap resources during the deployment lifecycle.

Configuration and initialization

WARNING! If your dbt project includes sinks, you must ensure that these are created in a dedicated schema and cluster. Unlike other objects, sinks must not be recreated in the process of a blue/green deployment, and must instead cut over to the new definition of their upstream dependencies after the environment swap.

In a blue/green deployment, you first deploy your code changes to a deployment environment (“green”) that is a clone of your production environment (“blue”), in order to validate the changes without causing unavailability. These environments are later swapped transparently.


  1. In dbt_project.yml, use the deployment variable to specify the cluster(s) and schema(s) that contain the changes you want to deploy.

    vars:
      deployment:
        default:
          clusters:
            # To specify multiple clusters, use [<cluster1_name>, <cluster2_name>].
            - <cluster_name>
          schemas:
            # to specify multiple schemas, use [<schema1_name>, <schema2_name>].
            - <schema_name>
    
  2. Use the run-operation command to invoke the deploy_init macro:

    dbt run-operation deploy_init
    

    This macro spins up a new cluster named <cluster_name>_dbt_deploy and a new schema named <schema_name>_dbt_deploy using the same configuration as the current environment to swap with (including privileges).

  3. Run the dbt project containing the code changes against the new deployment environment.

    dbt run --vars 'deploy: True'
    

    The deploy: True variable instructs the adapter to append _dbt_deploy to the original schema or cluster specified for each model scoped for deployment, which transparently handles running that subset of models against the deployment environment.

    If you encounter an error like String 'deploy:' is not valid YAML, you might need to use an alternative syntax depending on your terminal environment. Different terminals handle quotes differently, so try:

    dbt run --vars "{\"deploy\": true}"
    

    This alternative syntax is compatible with Windows terminals, PowerShell, or PyCharm Terminal.

Validation

We strongly recommend validating the results of the deployed changes on the deployment environment to ensure it’s safe to cutover.


  1. After deploying the changes, the objects in the deployment cluster need to fully hydrate before you can safely cut over. Use the run-operation command to invoke the deploy_await macro, which periodically polls the cluster readiness status, and waits for all objects to meet a minimum lag threshold to return successfully.

    dbt run-operation deploy_await #--args '{poll_interval: 30, lag_threshold: "5s"}'
    

    By default, deploy_await polls for cluster readiness every 15 seconds, and waits for all objects in the deployment environment to have a lag of less than 1 second before returning successfully. To override the default values, you can pass the following arguments to the macro:

    Argument Default Description
    poll_interval 15s The time (in seconds) between each cluster readiness check.
    lag_threshold 1s The maximum lag threshold, which determines when all objects in the environment are considered hydrated and it’s safe to perform the cutover step. We do not recommend changing the default value, unless prompted by the Materialize team.
  2. Once deploy_await returns successfully, you can manually run tests against the new deployment environment to validate the results.

Cutover and cleanup

WARNING! To avoid breakages in your production environment, we recommend carefully validating the results of the deployed changes in the deployment environment before cutting over.
  1. Once deploy_await returns successfully and you have validated the results of the deployed changes on the deployment environment, it is safe to push the changes to your production environment.

    Use the run-operation command to invoke the deploy_promote macro, which (atomically) swaps the environments. To perform a dry run of the swap, and validate the sequence of commands that dbt will execute, you can pass the dry_run: True argument to the macro.

    # Do a dry run to validate the sequence of commands to execute
    dbt run-operation deploy_promote --args '{dry_run: true}'
    
    # Promote the deployment environment to production
    dbt run-operation deploy_promote #--args '{wait: true, poll_interval: 30, lag_threshold: "5s"}'
    

    By default, deploy_promote does not wait for all objects to be hydrated — we recommend carefully validating the results of the deployed changes in the deployment environment before running this operation, or setting --args '{wait: true}'. To override the default values, you can pass the following arguments to the macro:

    Argument Default Description
    dry_run false Whether to print out the sequence of commands that dbt will execute without actually promoting the deployment, for validation.
    wait false Whether to wait for all objects in the deployment environment to fully hydrate before promoting the deployment. We recommend setting this argument to true if you skip the validation step.
    poll_interval 15s When wait is set to true, the time (in seconds) between each cluster readiness check.
    lag_threshold 1s When wait is set to true, the maximum lag threshold, which determines when all objects in the environment are considered hydrated and it’s safe to perform the cutover step.
    NOTE: The deploy_promote operation might fail if objects are concurrently modified by a different session. If this occurs, re-run the operation.

    This macro ensures all deployment targets, including schemas and clusters, are deployed together as a single atomic operation, and that any sinks that depend on changed objects are automatically cut over to the new definition of their upstream dependencies. If any part of the deployment fails, the entire deployment is rolled back to guarantee consistency and prevent partial updates.

  2. Use the run run-operation command to invoke the deploy_cleanup macro, which (cascade) drops the _dbt_deploy-suffixed cluster(s) and schema(s):

    dbt run-operation deploy_cleanup
    
    NOTE: Any active SUBSCRIBE commands attached to the swapped cluster(s) will break. On retry, the client will automatically connect to the newly deployed cluster
Back to top ↑